Sparse Generalized Fourier Transforms ∗
نویسندگان
چکیده
Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant of a generalized Fourier transform (GFT) becomes particularly simple and fast. Characterizations for finite element triangulations of a symmetric domain are given, and formulas for assembling the block-diagonalized matrix directly are presented. It is emphasized that the GFT preserves symmetric (Hermitian) properties of an equivariant matrix. By simulating the heat equation at the surface of a sphere discretized by an icosahedral grid, it is demonstrated that the block-diagonalization pays off. The gain is significant for a direct method, and modest for an iterative method. A comparison with a block-diagonalization approach based upon the continuous formulation is made. It is argued that the sparse GFT method is an appropriate way to discretize the resulting continuous subsystems, since the spectrum and the symmetry are preserved.
منابع مشابه
Sparse representation of two- and three-dimensional images with fractional Fourier, Hartley, linear canonical, and Haar wavelet transforms
Sparse recovery aims to reconstruct signals that are sparse in a linear transform domain from a heavily underdetermined set of measurements. The success of sparse recovery relies critically on the knowledge of transform domains that give compressible representations of the signal of interest. Here we consider twoand three-dimensional images, and investigate various multi-dimensional transforms ...
متن کاملImproved Approximation Guarantees for Sublinear-Time Fourier Algorithms
In this paper modified variants of the sparse Fourier transform algorithms from [32] are presented which improve on the approximation error bounds of the original algorithms. In addition, simple methods for extending the improved sparse Fourier transforms to higher dimensional settings are developed. As a consequence, approximate Fourier transforms are obtained which will identify a near-optima...
متن کاملAutomatic generation of fast discrete signal transforms
This paper presents an algorithm that derives fast versions for a broad class of discrete signal transforms symbolically. The class includes but is not limited to the discrete Fourier and the discrete trigonometric transforms. This is achieved by finding fast sparse matrix factorizations for the matrix representations of these transforms. Unlike previous methods, the algorithm is entirely autom...
متن کامل2-D affine generalized fractional Fourier transform
The 2-D Fourier transform has been generalized into the 2-D separable fractional Fourier transform (replaces 1-D Fourier transform by 1-D fractional Fourier transform for each variable) and the 2-D separable canonical transform (further replaces the fractional Fourier transform by canonical transform) in [3]. It also has been generalized into the 2-D unseparable fractional Fourier transform wit...
متن کاملNumerical stability of fast trigonometric and orthogonal wavelet transforms
Fast trigonometric transforms and periodic orthogonal wavelet transforms are essential tools for numerous practical applications. It is very important that fast algorithms work stable in a floating point arithmetic. This survey paper presents recent results on the worst case analysis of roundoff errors occurring in floating point computation of fast Fourier transforms, fast cosine transforms, a...
متن کامل